A STD-NMR study of the interaction of the Anabaena ferredoxin-NADP+ reductase with the coenzyme.

نویسندگان

  • Lara V Antonini
  • José R Peregrina
  • Jesús Angulo
  • Milagros Medina
  • Pedro M Nieto
چکیده

Ferredoxin-NADP+ reductase (FNR) catalyzes the electron transfer from ferredoxin to NADP+ via its flavin FAD cofactor. To get further insights in the architecture of the transient complexes produced during the hydride transfer event between the enzyme and the NADP+ coenzyme we have applied NMR spectroscopy using Saturation Transfer Difference (STD) techniques to analyze the interaction between FNRox and the oxidized state of its NADP+ coenzyme. We have found that STD NMR, together with the use of selected mutations on FNR and of the non-FNR reacting coenzyme analogue NAD+, are appropriate tools to provide further information about the the interaction epitope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the determinants of coenzyme specificity in ferredoxin-NADP+ reductase by site-directed mutagenesis.

On the basis of sequence and three-dimensional structure comparison between Anabaena PCC7119 ferredoxin-NADP(+) reductase (FNR) and other reductases from its structurally related family that bind either NADP(+)/H or NAD(+)/H, a set of amino acid residues that might determine the FNR coenzyme specificity can be assigned. These residues include Thr-155, Ser-223, Arg-224, Arg-233 and Tyr-235. Syst...

متن کامل

Localization and Quantitative Determination of Ferredoxin-NADP Oxidoreductase, a Thylakoid-Bound Enzyme in the Cyanobacterium Anabaena sp. Strain 7119.

Thylakoid membrane preparations obtained from mechanically disrupted (sonicated) cells of the cyanobacterium Anabaena sp. strain 7119 show a membrane-bound ferredoxin-NADP(+) oxidoreductase (EC 1.18.1.2) as determined either by specific antibodies or by using the ferredoxin-dependent NADPH-cytochrome c reductase activity, which is a specific test for this enzyme. However, in contrast with highe...

متن کامل

C-terminal tyrosine of ferredoxin-NADP+ reductase in hydride transfer processes with NAD(P)+/H.

Ferredoxin-NADP+ reductase (FNR) catalyzes the reduction of NADP+ to NADPH in an overall reversible reaction, showing some differences in the mechanisms between cyanobacterial and higher plant FNRs. During hydride transfer it is proposed that the FNR C-terminal Tyr is displaced by the nicotinamide. Thus, this C-terminal Tyr might be involved not only in modulating the flavin redox properties, a...

متن کامل

Expression of ferredoxin-NADP+ reductase in heterocysts from Anabaena sp.

The expression of ferredoxin-NADP+ reductase (FNR) from Anabaena sp. PCC 7119 in heterocysts and vegetative cells has been quantified. Specific reductase activity in heterocysts was approximately 10 times higher than in vegetative cells, corresponding to the increased FNR protein content. This was confirmed by immunoquantification of the FNR protein from whole filaments of Anabaena sp. PCC 7120...

متن کامل

Reduction of nitrate and nitrite by subcellular preparations of Anabaena cylindrica. I. Reduction of nitrite to ammonia.

Reduction of nitrite by cell-free preparations of Anabaena cylindrica in the dark has been investigated. Nitrite-reducing activity was recovered in a supernatant fraction. The nitrite reductase system was partially purified by column chromatography on Sephadex G-75. NADPH could serve as an H-donor. NADH was completely inactive. The reduction required ferredoxin which mediated the transfer of el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2014